

Course Objectives

- 1. Calculate velocity and acceleration.
- 2. Define force.
- 3. Identify common units of force.
- 4. Explain different types of force and give examples of each.
- 5. Define balanced and unbalanced forces.
- 6. Describe the effects of centrifugal and centripetal forces.

Abc Key	Terms (Define th	ne following)	
velocity			
acceleratio	۱		
force			
gravity			
friction			
normal for	ie		
drag			

tension -			
spring force			
Hooke's Law			
spirng constant			
torque			
buoyancy -			
electromagnetic for	ce		
balanced force			
unbalanced force			
centripetal force			
centrifugal force -			

Velocity

velocity = $\frac{\text{change in displacement}}{\text{time}}$ **v** = $\frac{\Delta x}{t}$

Acceleration

acceleration = $\frac{\text{change in velocity}}{\text{time}}$ $\mathbf{a} = \frac{\Delta v}{t}$

Force

Force = mass x acceleration

F = m a

1. Describe the First Law of Motion.

Newton's Second Law of Motion A force acting on a body gives it ______ in the ______ of the force.

3. Describe an application of Newton's Third Law of Motion.