

Course Objectives

- 1. Define matter.
- 2. Describe the physical characteristics of the 3 states of matter.
- 3. Define pressure for solids, liquids and gases.
- 4. Describe the relationship between pressure, temperature and volume for a gas.
- 5. Identify common units of pressure.
- 6. Distinguish between absolute pressure and gauge pressure.
- 7. Define fluid.
- 8. Identify common units of flow rate.
- 9. Describe the relationship between flow velocity and area.
- 10. Describe the relationship between flow velocity and pressure.
- 11. Describe Pascal's Principle and give examples of how it is applied.
- 12. Define material balance in a batch and a continuous process.
- 13. Apply the concept of conservation of matter to determine if a process system is balanced.

matter		
density		
prossure -		
pressure		
viccosity		
viscocity -		

atmospheric pressure
absolute pressure
absolute pressure
guage pressure
laminar flow -
turbulent flow
Bernoulli's Principle
Pascal's Principle
material balancing
centrifugal force -
<u>-</u>

 $\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$ (@ constant temperature)

- **P**₁ initial volume
- V₁ initial pressure
- P₂ final pressure
- V_2 final volume

Charles's Law

 $\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad (@ \text{ constant pressure})$

V1 - initial volume

T1 - initial temperature

 V_2 - final volume

T₂ - final temperature

Bernoulli's Principle

When velocity of a flow increases, pressure decreases.

1. Define pressure for

solids -	
liquids -	
dases -	
<u></u>	

- 2. Describe the relationship between volume and pressure in a gas.
- 3. Describe the relationship between temperature and pressure in a gas.
- 4. Describe the relationship between the area of a container such as a pipe and the velocity of fluid
- 5. When velocity of a fluid flow increases, pressure ______.
- 6. Give one example of an application of Pascal's Principle.
- 7. How might understanding Material Balance help an operator control a system?