

Course Objectives

- 1. Explain the role of signal transmission in a simple closed control loop model.
- 2. Explain four types of signal transmission (pneumatic, electronic, digital, and mechanical) and signal conversion.
- 3. Describe the role of analog and digital signals in control loops.
- 4. Identify common types of transducers including: I/P, P/I, I/E, E/I, I/F, F/I, E/F, and F/E.
- 5. Describe the purpose of common transducers.
- 6. Describe the operation of common transducers.
- 7. Describe safety concerns for common transducers.
- 8. Describe typical malfunctions for common transducers.
- 9. Identify transmitter drawings on P&IDs.
- 10. Describe signal scaling calculations (I/P, P/I, I/E, E/I, I/F, F/I, E/F, F/E, and square root to linear signal)

Transducer - _____

Transmitter - _____

"Smart" transmitter - _____

Signal Types	
// Pneumatic	
 - <i>///</i> Electrical	(Guided) Sonic/Radar

- 1. Feedback control systems include a process variable signal and a ______ variable signal.
- 2. The most common signal conversion used in chemical manufacturing is
 - current to pneumatic
 - voltage to current
 - current to frequency
 - pneumatic to current
- 3. List the three methods used to maintain signal integrity and reliability.

