

Course Objectives

- 1. Explain the function of controllers in a simple closed control loop model.
- 2. Define the terms: automatic to manual, manual to automatic, setpoint, tuning, direct acting, reverse acting, proportional band/gain, integral/reset, derivative/rate, and "bumpless" transfer.
- 3. Explain making setpoint adjustments on local and remote controllers.
- 4. Explain use of programmable logic controllers (PLC).
- 5. Explain use of distributed control systems (DCS).
- 6. Identify common controller drawings on P&IDs.

Key Terms (Define the following)

Controllers
Drogrammable Logic Controller (DLC)
Programmable Logic Controller (PLC)
Distributed Control System (DCS)
Process equilibrium -
Dead time
Lag time -
Gain

Copyright © 2013 | Regional Center for Advanced Manufacturing

1

- 1. Pneumatic controllers typically are installed remotely.
 - □ True □ False
 - **False**
- 2. At a basic level, you need three things to control a process:
 - DCS, PLC, and a method for choosing the correct action
 - D Purpose, a set of controllers, and a method for choosing the correct action
 - Purpose, a set of choices, and a method for choosing the correct action
 - A set of controllers, a PLC, and a DCS
- 3. Comparing a measured variable to a set point to make controlled decisions is called
 - □ an open loop.
 - □ a closed loop.
- 4. describes the controlled variable signal cycling above or below the set point or exhibiting random behavior.
 - Oscillation
 - □ Hunting
 - Overshoot
 - □ Hysteresis
 - Copyright © 2013 | Regional Center for Advanced Manufacturing